Exercise 1:

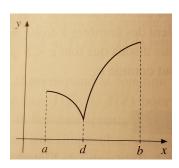
1.	Laquelle des expressions suivantes correspond à l'équation de la tangente $t_{x_0}(x)$ de la fonction $f(x) = (1+x)^{-1}$ au point $x_0 = 0$?
	$\Box -x$
	$\Box 1 + x$
	$\boxtimes 1-x$
	$\square x-1$
	\Box Aucune des réponses ci-dessus
2.	Laquelle des expressions suivantes correspond à l'équation de la tangente $t_{x_0}(x)$ de la fonction $f(x) = (1+x)^5$ au point $x_0 = -2$?
	$\Box -2x$
	$\boxtimes 5x + 9$
	$\Box 5x - 11$
	$\Box 5x-9$
	\square Aucune des réponses ci-dessus
3.	On considère la fonction $f(x) = \sqrt{1+x}$. Quelle valeur approximative de $f(3.1)$ obtient-on en utilisant l'approximation linéaire $t_{x_0}(3.1)$ au point $x_0 = 3$?
	$\square \ 2.125$
	$\square 2.0125$
	$\boxtimes 2.025$
	$\square 2.25$
	□ Aucune des réponses ci-dessus
4.	On considère la fonction $f(x)=\sqrt{6x-8}$. Quelle valeur approximative de $f(1.9)$ obtient-on en utilisant l'approximation linéaire $t_{x_0}(1.9)$ au point $x_0=2$?
	\square 1.975
	\Box 1.844
	\square 1.75
	$\boxtimes 1.85$
	\Box Aucune des réponses ci-dessus
5.	Quel est le développement limité à l'ordre 2 de la fonction $f(x)=e^{3x}$ au voisinage de $x_0=0$?
	$\Box 1 + 6x + \frac{3x^2}{2}$
	$\boxtimes 1 + 3x + \frac{9x^2}{2}$
	$\Box 1 + 3x + 9x^2$
	$\boxtimes 1 + 3x + \frac{9}{2}x^2$

 $\hfill \square$ Aucune des réponses ci-dessus

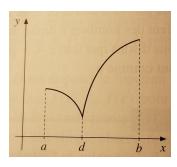
- 6. Quel est le développement limité à l'ordre 2 de la fonction $f(x)=e^{x+1}$ au voisinage de $x_0=-1$?
 - $\Box 1 + (x-1) + \frac{1}{2}(x-1)^2$
 - $\boxtimes 1 + (x+1) + \frac{1}{2}(x+1)^2$
 - $\Box 1 + (1-x) + \frac{1}{2}(1-x)^2$
 - $\boxtimes 1 + (x+1) + \frac{x^2 + 2x + 1}{2}$
 - \square Aucune des réponses ci-dessus
- 7. En utilisant la différentielle, approximer la variation de la fonction $f(x) = \ln(x)$ lorsque x varie entre 1 et 1.1 (poser $x_0 = 1$).
 - $\boxtimes \frac{1}{10}$
 - □ 0.001
 - $\Box \ln(0.1)$
 - $\boxtimes 0.1$
 - ☐ Aucune des réponses ci-dessus
- 8. En utilisant la différentielle, approximer la variation de la fonction $f(x) = x^{20}$ lorsque x varie entre 1 et 1.01 (poser $x_0 = 1$).
 - \square 0.02
 - \square 0.002
 - \square 2
 - $\boxtimes 0.2$
 - ☐ Aucune des réponses ci-dessus
- 9. On considère la fonction $f(x) = \sqrt[3]{x}$ et l'approximation linéaire $t_{x_0}(x)$ en un point x_0 . Quelle valeur de x_0 donne la meilleure approximation $t_{x_0}(400)$ de f(400)?
 - $\boxtimes x_0 = 7^3$

 - $\Box x_0 = 9^3$
 - $\Box x_0 = 10^3$
 - ☐ Aucune des réponses ci-dessus
- 10. Quel argument garantit que la fonction $f(x) = |x^2 + x 2|$ définie sur [-3, 3] atteint son minimum?
 - \Box cette fonction possède un point critique dans l'intervalle [-3,3],
 - ⊠ cette fonction est contine et définie sur un compact,
 - □ ça paraît assez clair, non?
 - ⊠ le théorème des valeurs extrêmes,
 - ☐ Aucune des réponses ci-dessus

11. Le minimum du graphe suivant est-il un point critique?



- □ Oui
- ⊠ Non
- 12. En supposant que le graphe ci-dessous correspond à une fonction définie uniquement sur l'intervalle a, b. Peut-on conclure que cette fonction atteint son maximum?



- \square Oui
- ⊠ Non
- 13. On considère la fonction $f(x) = \frac{1}{2}x^4 x^2 + 1$. Combien de points critiques possède-t-elle ?
 - \Box 0
 - \Box 1
 - \square 2
 - \Box 4
 - \boxtimes Aucune des réponses ci-dessus
- 14. Les points critiques de $f(x) = 2x^3 24x + 5$ définis sur] -5,5 [sont
 - \square -2, 0 et 2
 - \Box 1, 2 et 3
 - \boxtimes -2 et 2
 - \square -5 et 5

☐ Aucune des réponses ci-dessus

15. Les extrema (globaux et locaux) de $f(x) = 2x^2 - 4x + 5$ définis sur [-5, 5] sont

- \Box -1, -5 et 5
- ⊠ 1, -5 et 5
- \square 1, 2 et 3
- \Box -2, -5 et 5
- \square -5 et 5
- ☐ Aucune des réponses ci-dessus

Exercise 2:

Calculer le développement de Taylor à l'ordre 4 au voisinage de $x_0 = 0$

1. $f(x) = 6x^3 + 2x - 4$

Le développement de Taylor au voisinage de $x_0 = 0$ est aussi appelé développement de Maclaurin.

$$f^{'}(x) = 18x^{2} + 2$$
 $f^{''}(x) = 36x$ $f^{'''}(x) = 36$ $f^{'''}(x) = 0$
 $f^{'}(0) = 2$ $f^{''}(0) = 0$ $f^{'''}(0) = 36$ $f^{''''}(0) = 0$

Nous avons: $f(x) \simeq f(0) + f'(0) \cdot x + f''(0) \cdot \frac{x^2}{2} + f'''(0) \cdot \frac{x^3}{2 \cdot 3} + f''''(0) \cdot \frac{x^4}{2 \cdot 3 \cdot 4} = -4 + 2x + 0 + 6x^3 + 0$ Ce qui revient à la fonction de départ.

2.
$$f(x) = \frac{1}{1+x}$$

$$f'(x) = \frac{-1}{(1+x)^2} \quad f''(x) = \frac{-1}{(1+x)^2} \quad f'''(x) = 36 \quad f''''(x) = 0$$
$$f'(0) = 2 \qquad f'''(0) = 0 \qquad f''''(0) = 36 \quad f''''(0) = 0$$

Exercise 3:

Les fonctions suivantes admettent-elles des extrema locaux ? Si oui, quels sont-ils ? Lesquels sont des extrema globaux ?

- 1. $f(x) = \frac{x+1}{x-1}$ définie sur $\mathbb{R} \setminus \{1\}$.
- 2. $g(x) = x^2 2x 3$ définie sur l'intervalle [-2, 3].
- 3. $h(x) = |x^2 1|$ définie sur l'intervalle [-2, 2].
- 4. $k(x) = -\frac{1}{3}x^3 + 4x^2 + 20x + 2$ définie sur \mathbb{R}_+ .