Exercise 1:

1.	On considère la fonction $f(x,y) = 2x + x^2y^3$. Que vaut $f(-2,3)$?
	□ 32 □ 104 □ 112 □ -66 □ Aucune des réponses ci-dessus.
2.	Parmi les points suivants, lesquels se trouvent sur la surface correspondant au graphe de la fonction $f(x,y) = 12x^{-2}y$?
	□ $(2,1,6)$ □ $(-1/2,1/3,-1)$ □ $(1,-2,24)$ □ $(0,1,1)$ □ Aucune des réponses ci-dessus.
3.	On considère la fonction $f(x,y)=xy^2$, un couple $(a,b)\in\mathbb{R}^2$ et un nombre $h>0$. Que vaut $f(a,b+h)-f(a,b)$?
	□ $2abh + bh^2$ □ b^2h □ ah^2 □ $2abh + ah^2$ □ Aucune des réponses ci-dessus.
4.	On considère la fonction $f(x,y)=x^2+2xy+y^2$. Quelles sont les égalités correctes parmi les suivantes?
	$ \Box 4f(x,y) = f(2x,2y) \Box 2f(x,y) = f(x,2y) \Box 4f(x,y) = f(2x,y) \Box 2f(x,y) = f(2x,2y) \Box Aucune des réponses ci-dessus. $
5.	Parmi les ensembles suivants, le(s)quel(s) correspond(ent) au domaine de définition \mathcal{D}_f de la fonction $f(x,y) = \sqrt{2 - (x^2 + y^2)}$?
	$ \Box \{(x,y) \in \mathbb{R}^2 x^2 + y^2 \leq 2\} \Box \mathbb{R}^2 \setminus \{(x,y) \in \mathbb{R}^2 x^2 + y^2 = 2\} \Box \mathbb{R}^2 \setminus \{(x,y) \in \mathbb{R}^2 x^2 + y^2 \geq 2\} \Box \mathbb{R}^2 \setminus \{(x,y) \in \mathbb{R}^2 x^2 + y^2 > 2\} $

 $\hfill \square$ Aucune des réponses ci-dessus.

6. Quelle(s) valeur(s) de $x \in \mathbb{R}$ satisfait(ont) l'équation f(x,3) = 9, où $f(x,y) = \frac{1}{12}x^3(y+1)^2$?

- $\Box \left(\frac{3}{4}\right)^{1/3}$
- $\Box \left(\frac{27}{4}\right)^{1/3}$
- $\Box \ \frac{3}{4^{1/3}}$
- $\Box \frac{4}{3^{1/3}}$

☐ Aucune des réponses ci-dessus.

7. On considère l'ensemble $A = \{(x,y) \in \mathbb{R}^2 | x^2 + y^2 = 3\}$ et $f(x,y) = \sqrt{x^2 + y^2} - x^2 + 2 - y^2$. Quelles sont les affirmations correctes parmi les suivantes ?

- \Box A est une courbe de niveau $\sqrt{3} + 1$ de f
- \square A est une courbe de niveau $\sqrt{3}-1$ de f
- \square A est une courbe de niveau $\sqrt{3}$ de f
- \Box A est une courbe de niveau $-\sqrt{3}$ de f
- $\hfill \square$ Aucune des réponses ci-dessus.

8. On considère $f(x,y) = e^{x+y}$. Quelles sont les égalités correctes ?

- $\Box \frac{\partial f}{\partial x}(x,y) = e^{x+y}$
- $\Box \frac{\partial f}{\partial x}(x,y) = ye^{x+y}$
- $\Box \frac{\partial f}{\partial x}(x,y) = xe^{x+y}$
- $\Box \frac{\partial f}{\partial x}(x,y) = (x+y)e^{x+y}$

☐ Aucune des réponses ci-dessus.

9. On considère $f(x,y) = \ln(xy)$, où $x,y \in \mathbb{R}_+^*$. Quelles sont les égalités correctes ?

- $\Box \frac{\partial f}{\partial x}(x,y) = \frac{1}{x}$
- $\Box \ \frac{\partial f}{\partial x}(x,y) = \frac{1}{y}$
- $\Box \frac{\partial f}{\partial x}(x,y) = \frac{1}{xy}$
- $\Box \frac{\partial f}{\partial x}(x,y) = \frac{y}{xy}$

☐ Aucune des réponses ci-dessus.

10. On considère $f(x,y) = \sqrt{x^2 + y^2}$. Quelles sont les égalités correctes ?

$$\Box \frac{\partial^2 f}{\partial y \partial x}(x, y) = \frac{xy}{(x^2 + y^2)^{3/2}}$$

$$\Box \frac{\partial^2 f}{\partial y \partial x}(x,y) = \frac{-xy}{(x^2 + y^2)^{3/2}}$$

$$\Box \frac{\partial^2 f}{\partial y \partial x}(x,y) = \frac{-xy}{(x^2 + y^2)^{1/2}}$$

$$\Box \frac{\partial^2 f}{\partial y \partial x}(x,y) = \frac{xy}{(x^2 + y^2)^{1/2}}$$

☐ Aucune des réponses ci-dessus.

Exercise 2:

On considère la fonction f définie par

$$f(x,y) = \begin{cases} \frac{xy^3}{x^2 + y^2} & \sin(x,y) \neq (0,0) \\ 0 & \sin(x,y) = (0,0) \end{cases}$$

- 1. Calcular $\frac{\partial f}{\partial x}(x,y)$ lorsque $(x,y) \neq (0,0)$.
- 2. Calculer $\frac{\partial f}{\partial x}(0,0)$ lorsque $(x,y) \neq (0,0)$ en utilisant la définition des dérivées partielles.
- 3. Calculer $\frac{\partial^2 f}{\partial y \partial x}(0,0)$ (dérivée de $\frac{\partial f}{\partial x}(x,y)$ par rapport à y au point (0,0)) et $\frac{\partial^2 f}{\partial x \partial y}(0,0)$ (dérivée de $\frac{\partial f}{\partial y}(x,y)$ par rapport à x au point (0,0)) en utilisant la définition des dérivées partielles. Que peut-on constater ?

Exercise 3:

Donner le domaine de définition et calculer les dérivées partielles premières et secondes des fonctions suivantes:

$$1. \ f(x,y) = ye^x + xe^y$$

2.
$$g(x,y) = 12xy - x^2y - xy^2$$

3.
$$h(x,y) = \ln(x^2 + y^2)$$

4.
$$i(x,y) = \frac{1}{\sqrt{x^2 + y^2}}$$

5.
$$j(x,y) = \ln(y - 2x^2)$$

6.
$$k(x,y) = \sqrt{x^2 + y^2 - 17}$$

7.
$$l(x,y) = \ln(x^2y + xy - 2y)$$