Exercise 1:

1.	Sachant que $(0,0)$ est un point critique de $f(x,y)=x^3+y^3$, le calcul du discriminant $D(0,0)$ est-il concluant pour déterminer sa nature (i.e., min, max ou point-selle)?
	□ oui
	\boxtimes non
2.	On considère la fonction $f(x,y) = \ln(1+x^2y^2)$. Combien y a-t-il de points critiques?
	\square 0
	\square 2
	\Box 4
	⊠ une infinité
	□ Aucune des réponses ci-dessus
3.	Laquelle des expressions suivantes correspond à l'expression du Lagrangien de la fonction $f(x,y) = (x+1)^2 + y^2$ sous la contrainte $x^2 + 4y^2 = 16$?
	$\Box \mathcal{L}(x,y,\lambda) = (\lambda - 1)x^{2} + (1 + 4\lambda)y^{2} + 2x - 16\lambda + 1$
	$\boxtimes \mathcal{L}(x,y,\lambda) = (1-\lambda)x^2 + (1-4\lambda)y^2 + 2x + 16\lambda + 1$
	$\Box \mathcal{L}(x,y,\lambda) = (\lambda - 1)x^2 + (4\lambda - 1)y^2 + 2x - 16\lambda + 1$
	$\boxtimes \mathcal{L}(x,y,\lambda) = -\lambda(x^2 + 4y^2 - 16) + y^2 + x^2 + 2x + 1$ \square Aucune des réponses ci-dessus
4.	On considère la fonction $f(x,y)=x^2y^3$ sous la contrainte $x+y=5$. Combien y a-t-il de points critiques?
	\Box 1
	\square 2
	$oxed{\boxtimes} 3$
	□ Aucune des réponses ci-dessus
5.	La fonction $f(x,y) = x^2 - 3y^2$ sous la contrainte $x + 2y = 1$ possède
	⊠ un minimum sous contrainte
	□ un maximum sous contrainte
	□ un minimum sous contrainte et un maximum sous contrainte
	un minimum sous contrainte et deux maximum sous contrainte
	□ Aucune des réponses ci-dessus
6.	Quels sont les points critiques de $f(x,y) = 81x^2 + y^2$ sous la contrainte $4x^2 + y^2 = 9$
	$\Box \left(-\frac{3}{2},0\right); \left(\frac{3}{2},0\right); (-3,0); (3,0),$
	$\boxtimes \left(-\frac{3}{2},0\right); \left(\frac{3}{2},0\right); (0,-3); (0,3),$

- $\Box (-\frac{3}{2},0); (\frac{3}{2},0),$
- $\Box (-3,0); (3,0),$
- ☐ Aucune des réponses ci-dessus

Exercise 2:

- 1) Déterminer les points critiques sous contraintes des fonctions données aux questions 3 et 4 du gcm.
- 2) Quelle est la nature des points critiques sous contraintes des fonctions données aux questions 3, 4 et 6 du qcm?
- $f(x,y) = (x+1)^2 + y^2$ sous la contrainte $x^2 + 4y^2 = 16$.

Le système (non linéaire) d'équations correspondant aux conditions du premier ordre sur le lagrangien est

$$\begin{cases} 2x - 2\lambda &= -2\\ 2y - 8\lambda y &= 0\\ x^2 + 4y^2 &= 0 \end{cases}.$$

Ce système admet quatre solutions : $(x = -4, y = 0, \lambda = \frac{3}{4}), (x = 4, y = 0, \lambda = \frac{5}{4}), (x = -\frac{4}{3}, y = \frac{4\sqrt{2}}{3}, \lambda = \frac{1}{4})$ et $(x = -\frac{4}{3}, y = -\frac{4\sqrt{2}}{3}, \lambda = \frac{1}{4})$.

Le discriminant du problème vaut

$$D(x, y, \lambda) = (2 - 2\lambda)64y^{2} + (2 - 8\lambda)4x^{2}.$$

Il est négatif pour les deux premiers points critiques et il est positif pour les deux derniers. La fonction f admet donc deux maximums sous la contrainte : (-4,0) et (4,0) et deux minimums sous la contrainte : $(-\frac{4}{3},-\frac{4\sqrt{2}}{3})$ et $(-\frac{4}{3},\frac{4\sqrt{2}}{3})$.

• $f(x,y) = x^2y^3$ sous la contrainte x + y = 5. En substituant x par 5 - y dans l'expression de f, le problème revient à étudier la fonction d'une variable :

$$h(y) = (5-y)^2 y^3$$

dont la dérivée vaut

$$h'(y) = 5y^2(5-y)(3-y).$$

La fonction h admet trois points critiques : $y=0,\ y=5$ et y=3. La fonction f admet donc trois points critiques sous la contrainte x+y=5: $(5,0),\ (2,3),\ (0,5)$ (pour trouver la valeur de x correspondant à chaque valeur de y il suffit d'utiliser l'égalité donnée par la contrainte). La dérivée seconde de h vaut

$$h''(y) = 5y [(5-y)(3-y) - y(3-y) - y(5-y)].$$

Comme h''(5) > 0, le point critique (0,5) est un minimum de f sous contrainte.

Comme h''(3) < 0, le point critique (2,3) est un maximum de f sous contrainte.

Comme h''(0) = 0, on ne peut pas conclure sur la nature du point critique (5,0).

• $f(x,y) = 81x^2 + y^2$ sous la contrainte $4x^2 + y^2 = 9$. Le système d'équations (non linéaire) correspondant aux conditions du premier ordre du lagrangien est

$$\begin{cases} x(81 - 4\lambda) &= 0 \\ y(1 - \lambda) &= 0 \\ 4x^2 + y^2 &= 9 \end{cases}.$$

Ce système admet quatre solutions : $(x=0,y=-3,\lambda=1), (x=0,y=3,\lambda=1), (x=-\frac{3}{2},y=0,\lambda=\frac{81}{4})$ et $(x=\frac{3}{2},y=0,\lambda=\frac{81}{4})$. Le discriminant du problème est

$$D(x, y, \lambda) = (162 - 8\lambda)4y^{2} + (2 - 2\lambda)64x^{2}.$$

Comme $D(x=0,y=-3,\lambda=1)>0$ et $D(x=0,y=3,\lambda=1)>0, (x=0,y=-3)$ et (x=0,y=3) sont des minimums de f sous la contrainte.

Comme $D(x = -\frac{3}{2}, y = 0, \lambda = \frac{81}{4}) < 0$ et $(x = \frac{3}{2}, y = 0, \lambda = \frac{81}{4}) < 0$, $(x = -\frac{3}{2}, y = 0)$ et $(x = \frac{3}{2}, y = 0)$ sont des maximums de f sous la contrainte.